

RollNo. 

|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2025

ECE  
Semester IV  
**EC5404 & DIGITAL SIGNAL PROCESSING**  
(Regulation2019)

Time:3hrs

Max.Marks: 100

|     |                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------|
| CO1 | Ability to apply the concepts of discrete Fourier transform                                             |
| CO2 | Ability to design and analyze IIR filter                                                                |
| CO3 | Ability to design and analyze FIR filter                                                                |
| CO4 | Ability to analyze performance degradation of digital signal processing systems due to finite precision |
| CO5 | Ability to analyze the architectural details of fixed and floating digital signal processor             |

**BL – Bloom's Taxonomy Levels**

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

**PART- A(10x2=20Marks)**  
(Answer all Questions)

| Q.No. | Questions                                                                                                   | Marks | CO | BL |
|-------|-------------------------------------------------------------------------------------------------------------|-------|----|----|
| 1     | Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$ .                                                         | 2     | 1  | 2  |
| 2     | State Parseval's theorem in DFT.                                                                            | 2     | 1  | 1  |
| 3     | Enumerate the characteristics of Butterworth Filter.                                                        | 2     | 2  | 1  |
| 4     | Convert the given analog transfer function $H(s) = \frac{1}{s+a}$ into digital by impulse invariant method. | 2     | 2  | 2  |
| 5     | Compare FIR and IIR Filters.                                                                                | 2     | 3  | 1  |
| 6     | Mention the necessary and sufficient condition for the linear phase characteristic of an FIR filter.        | 2     | 3  | 1  |
| 7     | How the digital filter is affected by quantization of filter coefficients?                                  | 2     | 4  | 2  |
| 8     | Why rounding is preferred over truncation in realizing digital filter.                                      | 2     | 4  | 2  |
| 9     | Mention the applications of Multi Rate Signal Processing.                                                   | 2     | 5  | 1  |
| 10    | State sampling theorem.                                                                                     | 2     | 5  | 1  |

**PART- B(5x 13=65Marks)**

| Q.No.  | Questions                                                                                                                                                                            | Marks | CO | BL |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 11 (a) | Using radix 2 DIT-FFT algorithm ,determine DFT of the given sequence for $N=8$ $x(n)=n$ for $0 < n < 7$                                                                              | 13    | 1  | 3  |
| OR     |                                                                                                                                                                                      |       |    |    |
| 11 (b) | Perform the circular convolution of the following sequences $x(n) = \{1, 1, 2, 1\}$ , $h(n) = \{1, 0, 4, 3\}$ using DFT and IDFT method.                                             | 13    | 1  | 3  |
| 12 (a) | Design and realize analog lowpass IIR Chebyshev filter with the following specifications: $\alpha_P = 16$ dB, $\alpha_S = 7$ dB, $\Omega_P = 20\pi$ rad/s, $\Omega_S = 100\pi$ rad/s | 13    | 2  | 4  |
| OR     |                                                                                                                                                                                      |       |    |    |

|           |                                                                                                                                                                                                                                                                                           |    |   |   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 12 (b)    | Design a digital Butterworth lowpass filter using the bilinear transformation for the following specifications:<br>$0.8 \leq  H(e^{j\omega})  \leq 1; \quad 0 \leq \omega \leq 0.2\pi$<br>$ H(e^{j\omega})  \leq 0.2; \quad 0.6\pi \leq \omega \leq \pi$                                  | 13 | 2 | 4 |
| 13 (a)    | Determine the filter coefficients for an FIR filter approximating the ideal frequency response having $N=7$ using Hamming window.<br>$H_d(\omega) = \begin{cases} e^{-j\alpha\omega}; & \text{for }  \omega  \leq \frac{\pi}{6} \\ 0; & \frac{\pi}{6} \leq  \omega  \leq \pi \end{cases}$ | 13 | 3 | 4 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                           |    |   |   |
| 13 (b)    | Obtain the direct form II, cascade and parallel form realization for the system $y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$                                                                                                                                           | 13 | 3 | 4 |
| 14 (a)    | For the second order IIR filter, the system function is,<br>$H(Z) = \frac{1}{(1-0.5z^{-1})(1-0.45z^{-1})}$ Explain the effect of shift in pole location with 3-bit coefficient representation in direct and cascade forms.                                                                | 13 | 4 | 3 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                           |    |   |   |
| 14 (b)    | Explain the characteristics of a limit oscillation with respect to the system described by the difference equation $y(n) = x(n) + \frac{3}{4}y(n-1)$ , where input $x(n) = \frac{15}{16} \delta(n)$ . Determine the deadband of the filter.                                               | 13 | 4 | 3 |
| 15 (a)    | Derive and draw the spectrum of a down sampler used in decimator.                                                                                                                                                                                                                         | 13 | 5 | 2 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                           |    |   |   |
| 15 (b)    | Explain the polyphase structure of decimator and interpolator.                                                                                                                                                                                                                            | 13 | 5 | 2 |

**PART- C(1x 15=15Marks)**  
(Q.No.16 is compulsory)

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                         | Marks | CO | BL |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 16.   | A cascaded realization of the two first order digital filter is shown below. The system functions of the individual sections are $H_1(z) = \frac{1}{1-0.5z^{-1}}$ and $H_2(z) = \frac{1}{1-0.5z^{-1}}$ . Draw the product quantization noise model of the system and determine the overall output noise power if $b=3$ bits (excluding sign bit). | 15    | 4  | 5  |

